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Abstract

In the past, CNN trains the model with back-
propagation. The model is lack of explanation
and has large quantity of computation, so a CNN
without back-propagation (FF-CNN) is proposed
recently. The model replaces the convolution
part with feature extraction method based on
PCA. But PCA inputs the training data in a vector
form. For images, it loses the information
between different order so that the performance
is limited.

This study proposed a classification model
called Pixel-Anchored CNN (PA-CNN) which
modifies the FF-CNN and replaces PCA stage with
the High-Order Principal Component Analysis
(HOPCA). It reduces quantity of computation and
the loading of memory and the performance
slightly increases.

Model Framework (PA-CNN)
Input: {(X1, 1), (X2,¥2), ..., (X, yu)}: data,
N_onv: Number of convolution layer,
N¢c: number of FC layer,
[kq, k,]: kernel size.
Output: {Ay,A,, ..., Ay,,,, }: anchors and bias,
{Wl,Wz, ,WNfC}: FC layer weight set.
Forl=1,2,..,N.ny, do
Forp = 1,2, ..., anchored pixel do
Get anchors and bias by HOSaab.
End
Reshape feature map to tensor.
Apply max-pooling.
End
Forl=1,2,..,Ns, do
Create pseudo label by k-means clustering.
Solve the least-square problem.
End

Problem description
We modify two parts of convolution in
original CNN. One is the convolution step.

It do the affine transformation.
d
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Those filters in CNN are aj. in Eq (1), we
call them anchor vectors. We want to
determine anchors directly rather than
back-propagation. The other is activation
function. Activation function in CNN do the
job in resolving sign confusion problem.A
feature extraction method called Saab can
resolve these two problems. We propose a
method called HOSaab by combining Saab
and HOPCA and apply it on the PA-CNN
framework.
HOSaab (High-Order Saab)
Let {X;, X5, ..., Xy} be a set of M tensor
objects, where X; € RItX2XXIN HOSaab
first separate data to DC subspace Spc and
AC subspace Syc. Spc is spanned by 1

Y =Xy X UD X, UD x . x UM + B >0

where 1 is the tensor with all elements
equal to one . Anchors selection. We
conduct HOPCA on the AC component. The
anchor vectors are selected as the
dominant singular vectors. HOPCA is to
find the orthogonal projection set
{U™ e RWPn: B <Ip,n=12,..,N}
to maximize the total scatter W =
M l1Um —Yll, where U is the mean
tensor and Y, € RP1XP2X*PN s defined
by

Bias selection. Bias tensor is selected as
the B = b1 where b = max|| X, ||, which
m

ensures that the tensor version affine
transformation is non-negative. Namely,

Fully-connected (FC) Layer
Fully-connected layer in original CNN is
treated as least-square problems with
pseudo label. it can capture the diversity in
the same class.
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Pixel-Anchored CNN (PA-CNN)

The First part do the convolution on
images in a specific kernel size to get
patches. Then apply HOSaab on the
patches obtained by the same pixels

successively.
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Second part, construct the least-square
problem with the reduced features.

Conclusions

This study explore the classification
accuracy and the computation time of
models. The experiment shows that
Pixel-anchored CNN  reduce the
computation time both on Saab and
HOSaab. The accuracy of PA-CNN with
HOSaab slightly higher than Saab.
Explain that HOPCA captures more
important information than PCA.
Although HOSaab has more time-
consuming than Saab, we can apply PA-
CNN to reduce the training time instead
of FF-CNN.

Results
CIFAR10 Table 1: classification accuracy of CIFAR10
The CIFAR10 database contains 10 classes with 5000 images per class. train size 1000 | 5000 | 10000 | 25000 | 50000
; Classification Accuracy of CIFAR10 13000 Elapsed time of CIFAR10 FF-CNN with Saab 11.71 | 40.36 | 50.50 | 57.71 | 60.69
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g, g oo i train size © 1000 | 5000 | 10000 [ 25000 [ 50000
®  FF-CNN with Saab © 20004 - )i FF-CNN with Saab 1761.81 | 2706.42 | 3942.59 | 6322.54 | 9139.03
0.2 & PA-CNN with Saab y - -
PA-CNN with HOSaab . . T PA-CNN with Saab 198.56 | 303.33 | 419.46 | T15.15 | 1132.84
: > A
0l sm0 o0 2s00 30000 %0 oo oo smo  soom PA-CNN with HOSaab | 436.39 | 842.83 | 1281.33 | 2856.55 | 5673.77
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