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Abstract

The laser rotating Bose-Einstein Condensates
is governed by the rotating Schrodinger
equation. The dynamical formation of wave
function is observed by the continuation
method that solves the parameterized
nonlinear equations discretized by spectral
method. The proposed continuation
algorithm takes the scatter length as
parameter for a reduced system, followed by
an algorithm taking angular velocity as
parameter. The scheme is more efficient due
to the size of the nonlinear equation being
reduced in half.

Problem description

Bose-Einstein condensates(BEC) is a state of matter of a gas of bosons cooled to temperatures
very close to absolute zero, that is, near 0 K. This state is described by the wave function ¥(z,t)
in the nonlinear Schrodinger equation.

t>0,z € QC R?

]
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Y= —EALP + V@)V + u|¥Y?¥ — wlL, V¥,
Y(z,t) =0, t=>0,z€0Q
where i = vV—1,z = (x,y) € R%,¥(z,1): R? x R — Cis the wave function, V= 0, + dyy is the
Laplace operator, V(z) is an external trapping potential, i € R is the interact scattering length,

w is the angular velocity, the operator L, = —i(xdy — ydx) is the z component of the angular
momentum, and Q is a bounded and smooth domain.
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Algorithm

Separating real and imaginary parts, we obtain
—%AR(Z) +V(z)R(z) + ul¢(2)|?R(z) — w(xT, —yT,) = AR(z),Z € Q
—%AT(Z) +V@)T(2) + ulp@)|*T(2) + w(xRy — yR,) = AT(2),z € Q
R(z) =T(z) =0, ondQ

Discretize the system into rotating nonlinear Schrodinger equation F: R2¥*2 — RZN+1

Fi(ablLw)=[L+V—-2AGla+puh—ws=0
F,(abAw)=[L+V—-AGlb+uk+wt=10
e(a,b, 1, w) = h?[c o (Ga)]T(Ga) + h?[c > (Gb)]T(Gb) —1 =0

F(a,b,,w) =

The following subsystem is solved by the continuation method with initial value given by linear

Fi@Aw)=[L+V—-2AGla+uh=0
e(a, 1, w) = h%[ce (Ga)]"(Ga)—1=0

Schrodinger equation. F(a,Au) =

Once we have a solution 1 of subsystem, then (i, i) is a solution of equation F(a,b,1,0) = 0

Results 0:[-8,8]%,V(z) = %(1. 44x%+y?)

Initial solution:

n=100-w=0.68 p=200-w=0.66

p=200-w=086

n=100 w=0.88
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