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Main Schema  Let 𝐤 = 𝜆ሚ𝐤 with unit vector ሚ𝐤 and complex wave 

number 𝜆 ∈ ℂ. Then (1) can be reduced into the following constrained 

quadratic operator pencil (assumed with 𝜇(𝒙,𝜔) ≡ 1) 

𝚤𝜆ሚ𝐤 + ∇ × 𝚤𝜆ሚ𝐤 + ∇ × 𝑬𝒑 = 𝜔𝟐𝜀 𝒙, ω 𝑬𝒑.

We use Yee’s scheme to discretize (2) to yield a GQEP

𝜏2𝑀 + 𝜏𝐺 + 𝐾 𝒆 = 𝟎,  𝜏 = 𝜄𝜆
where 𝑀T = 𝑀, 𝐺T = −𝐺, 𝐾T = 𝐾. Furthermore, under the Cayley 

transformation, we map the GQEP to a T-PQEP 

𝜈2𝐴T − 𝜈𝑄 + 𝐴 𝒆 = 𝟎, 𝜈 = ±
1+𝜏

1−𝜏
,

with 𝑄T = 𝑄. Finally, via the T-symplectic linearization and the (𝑆 +
𝑆−1)-transform, the T-PQEP is transformed into a T-skew-Hamiltonian 

pencil of a T-skew-Hamiltonian pair (𝒦,𝒩) as

𝒦𝒖 = 𝜂𝒩𝒖,  𝜂 = 𝜈 + 𝜈−1,

which we would solved via the GTSHIRA.
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Abstract This work is devoted to the numerical computation of complex band structure 𝐤 = 𝐤(𝜔) ∈ ℂ3 for positive frequency 𝜔 of 3D 

isotropic dispersive or non-dispersive photonic crystals from the perspective of gyroscopic quadratic eigenvalue problems (GQEPs). Our 

basic strategy is to fix two degrees of freedom in k and to view the remaining one as the eigenvalue of a quadratic operator pencil 

derived from Maxwell's equations. Then Yee's scheme is employed to discretize ∇ ×and 𝒌 × operators in this quadratic operator pencil.  

Furthermore, we reformulate this QEP into an equivalent T-palindromic QEP (T-PQEP) for which we have established the structure-

preserving algorithm, namely, the generalized T-skew-Hamiltonian implicit restarted Arnoldi algorithm (GTSHIRA). 

Numerical Experiments  We consider the 3D PC with the BCC lattice structure, in its 

primitive cell there were two different media separated by the interface of a single 

gyroid structure. The permittivity of the media inside the single gyroid region is 

𝜀1 𝜔 , while the rest space of the primitive cell is just air. 

Benchmark Problem: Non-dispersive PC (𝜀1 𝜔 ≡ 16)  By chosen 𝜔 ∈ [0.3,0.7] and 
ሚ𝐤 over the deformed first Brillouin zone, we can draw the imaginary part of those 

complex wave numbers which have smallest imaginary parts and compare between 

the standard BS (𝜔) and the complex BS (𝜆).

Numerical Efficiency of GTSHIRA on Dispersive PC (𝜀1 𝜔 = 𝟏 −
𝝎𝒑
𝟐

𝝎(𝝎−𝜾𝜸𝒑)
)  

In GTSHIRA, we proposed a preconditioned linear system to deal with each iteration, 

which were get a pretty good performance on various parameters. 

Furthermore, the average iteration numbers of GTSHIRA corresponding to each unit 

wave vectors were quite stable.
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Problem Description  The electromagnetic fields in 

dispersive photonic crystals (PCs) are governed by the 

following source-free Maxwell's equations (MEQs) in the 

frequency domain,

∇ × 𝐄 = −ι𝜔𝜇(𝒙,𝜔)𝐇,   ∇ × 𝐇 = ι𝜔𝜀(𝒙,𝜔)𝐄,

where 𝜇,𝜀: ℝ3 × ℝ → ℂ are the permeability and permittivity 

of a isotropic dispersive material, which are lattice-periodic 

with lattice vectors 𝐚ℓ ℓ=1
3 . Then, from Bloch theorem, 𝐄

and 𝐇 in (1) can be factorized into 𝐄 = 𝑒𝚤𝐤∙𝐱𝑬𝒑and 𝐇 =

𝑒𝚤𝐤∙𝐱𝑯𝒑 where 𝐤 ∈ ℝ3 denoted the wavevector and 𝑬𝒑, 𝑯𝒑

are periodic in conformity with 𝜇 and 𝜀. In the case of non-

dispersive PCs, usually the wave vector 𝐤 ∈ ℝ3 is chosen 

beforehand, and MEQs (1) are discretized into a constrained 

eigenvalue problems w.r.t ω. By solving a few smallest 

positive ω’s for different 𝐤, we obtain the dispersion curves 

𝜔 = 𝜔 𝐤 or the standard band structures (BSs) [2,3].  Due 

to the nonlinearity of 𝜇 or 𝜀 on ω, it is more challenging to 

compute the dispersion curves 𝜔 = 𝜔(𝐤), as shown in [4]. 

Moreover, in many cases, 𝜇 or 𝜀 is a rational function of ω
in the partial fraction form with more than two terms, then 

the rational eigenvalue problem w.r.t. 𝜔 is transformed into 

a polynomial eigenvalue problem with a relatively high 

degree, which is still not easy to solve. However, it is much 

more convenient to adopt an opposite perspective that the 

wave vector 𝐤 is viewed as a function 𝐤 = 𝐤 (𝜔) of the real 

frequency 𝜔. In this case, we only solve the QEP to compute 

the complex BS 𝐤 = 𝐤 (𝜔), i.e., to solve 𝐤 ∈ ℂ3 such that 

ω(𝐤) is equal to a positive constant.
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(Red dots denoted the target wave numbers)
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