BO-YU Cheng (鄭伯俞), Department of Electrical Engineering, National Chiao Tung University, Taiwan (tiny.nemo.fishgmail.com) Advisor: Prof. Ming-Hsuan Kang (康明軒)

Introduction

Gödel's Incompleteness Theorems are famous theorems in Mathematical Gödel's First Incompleteness Theorems based on concepts from Computability T pens not only in First Order Peano Arithmatic but also in any Formal Theory that

Definitions

- A Formal Theory T consists of :
- [1] A finite set of symbol Σ_T
- [2] The set of finite sequences of Σ_T , (denoted by Σ_T^*), is called *strings in* T
- [3] Elements in a decidable subset of Σ_T^* are called the **formulas** in T
- [4] A *formula* **x** may be considered to be a **proof** of another *formula* **y** (" *is_a_*]
- [5] A formula f is **provable** if there exists a proof of f
- Given a Formal Theory T, programs in T are the computable functions with in P as some string $[P]_T$ in T, such that another program U can simulate the beh
- For any Formal Theory T, a program V is said to be a **Proof Verifier** for T if
- We say a Formal Theory T can reason about programs if :
- [1] T has a negation sign " \neg "
- [2] There exists some computable mapping H such that if a program P halts on $-\mathbf{H}([\mathbf{P}]_{\mathbf{T}}, \mathbf{x}, \mathbf{y})$ is a provable formula.
 - $-\neg \mathbf{H}([\mathbf{P}]_{\mathbf{T}}, \mathbf{x}, \mathbf{z})$ is a provable formula for all $z \neq y$
- . Given a Formal Theory T that reasons about programs:
- We say that T is **consistent** if there is no formula ϕ in T such that both ϕ and
- We say that T is **complete** if for any formula ϕ in T, either ϕ is provable or

Remark

Reference

- $\beta lemma$), which essentially proofs that PA can reason about programs.

Incompleteness and Computabilits

	Theorem
Logic. In this article, I present a proof of <i>Theory</i> . The result suggests that <i>incompleteness</i> hapathese that the capability to reason about programs.	Theorem 1. Let T be a formal th and consistent.
	<i>Proof.</i> Consider the following prop, we don't care what M does):
	Algorithm
	Require: Pi
	for all for
	if $V(H)$
	ret
<i>proof_of</i> " is a binary relation on <i>formulas</i>)	else if
<i>nput</i> and <i>output</i> in Σ_T^* . We can also encode a program haviour of P by given $[P]_T$ as input.	end if end for
f $V(\phi, p)$ decides whether p is a proof of ϕ in T .	Now, Assume T is consistent. Co
n input x with output y , then	[1] $H([M], [M], 0)$ is provable in T
	[2] $\neg H([M], [M], 0)$ is provable in
	[3] Both $H([M], [M], 0)$ and $\neg H([M], 0)$
	By the definition of M , in case f , which contradicts the assumption programs, $H([M], [M], 0)$ is prov
d $\neg \phi$ are provable.	which by definition means T is in
$r \neg \phi$ is provable.	

] Relation to Gödel's Original Statement : The proof presented here is actually more general than Gödel's original statement , in the sense that PA is a special case of of our formal theory. In fact , Gödel proved a lemma in his original proof (often referred to as 2] Interpretation About the Result This proof shows that Incompleteness not only occurs in PA, but also Formal Theorys that have the ability to reason about program.

A computability-base-proof of 1'st incompleteness Theorem. https://www.scottaaronson.com/blog/?p=710 [2] Computability based Proof of 2'nd incompleteness theorem. http://www.ams.org/notices/201011/rtx101101454p.pdf

heory with a proof verifier V , which can reason about programs , then T cannot be both complete

ogram M in T, whose input is the encoding [X] of another program X (if the input is not an encoding

1 Program $M([X]_T)$ Proof Verifier V of T $rmula \ p \ in \ T \ do$ H([x], [x], 0), p) then $\triangleright p$ proves that X([X]) returns 0 eturn 1 $V(\neg H([X], [X], 0), p)$ then $\triangleright p$ proves that X[X] doesn't return 0 eturn 0

Consider the result of M([M]). There are 3 cases :

', and $\neg H([M], [M], 0)$ is not provable in T.

T, and H([M], [M], 0) is not provable in T.

[M], [M], 0) are not provable in T

1, we have M([M]) returns 1. Since T reasons about programs, H([M], [M], 1) is provable in T on that T is consistent. Similarly, in case 2, we have M([M]) returns 0. Since T reasons about vable in T, which contradicts the assumption that T is consistent. Hence, only case 3 can happen, ncomplete.

