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Assisted Design of  Chemical Structures and Properties Prediction via Deep Generative Model

To accelerate the exploration of novel materials, the

deep-learning-based inverse design for the intelligent

discovery of organic molecules was introduced by

experts in computational materials. The novel molecules

with desired properties can be generated from the

trained continuous latent space, which describes the

high-level feature for chemical structure. In addition to

continuous representation which relates to actual

chemical structures, we reschedule each loss in our

model and search optimal molecules with precise

chemical structures efficiently. This approach helps us

not only to generate the valid chemical structures by our

deep generative model precisely but also to correspond

molecules to the perspective of physical significance in

each chemical property. We implement organic

molecules on our model with electrical properties.

Over the past decades, researchers dedicated to

searching new materials with desired properties by

conducting enormous experiments and simulations.

However, discovering novel materials with desired

properties remains an expensive task and takes a long

period of time. Deep learning (DL) gives a potential

solution to reduce the cycle of development and explore

new chemical structures. Large amounts of novel

candidate molecules with predicted properties can be

obtained by DL model instead of through trial and error

with simulations and experiments. Therefore, we can

efficiently reduce the potential candidates of materials

by machine-learning-based inverse design [1]. Due to

the difficulty of searching large areas of chemical space,

we need to establish a general model to search optimal

molecules described by continuous representation [2].

However, how to construct a general model that can be

implemented by the DL algorithm with domain

knowledge in physic and chemistry is still a problem

needed to be solved.

The proposed variational autoencoder (VAE) model for

inverse design is combined as follows. Both the encoder and

decoder consist of the word embedding for SMILES string

with 48 dimension sizes and 2-layers gated recurrent units

(GRU) with 512 units of hidden states. The property

predictor consists of 2-layers neural networks with 28 and

14 nodes. Since the VAE model underestimates the

reconstruction loss, it breaks the balance with KL loss [3].

Since the posterior collapse phenomenon of the RNN

autoencoder, the architecture tends to ignore the subset of

latent variables and causes the latent space less meaningful.

We can adjust the reconstruction loss to recover the balance

of loss [4]. The VAE was trained by 106,598 molecules and

validated by 26,649 molecules in the QM9 dataset [5].

VAE served as a generative model that can be more

precise to reconstruct the SMILES representation by

adjusting the loss weights and the reduced latent dimension.

Besides, the predictor also correlates chemical properties

with the high-level feature on latent space. That is, the

similar molecules cluster after latent space is reorganized by

jointing the property prediction. When we choose two

molecules with different properties, we can find a continuous

relationship on not only the latent space but also the

chemical properties. The results are shown in figure 4, 7 and

9.
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Figure 1. VAE architecture

of deep generative inverse

design model. It combines

with GRU-based sequence-

to-sequence model for

chemical structure

reconstruction and property

prediction model with

multilayer perceptron

(MLP) structure. As the

model learn the dataset

with SMILES string

structure and numerical

property values, we can

find the connection

between the physical

significance of chemical

structure and chemical

properties on the latent

space.

Pearson

Correlation

MAE R
2

bandgap 0.9733 0.2423 0.9378

HOMO 0.9318 0.1730 0.8604

LUMO 0.9815 0.2400 0.9434

Dipole 

Moment

0.8975 0.5176 0.7828

Figure 6. Relation of chemical properties between the real value of properties from the

QM9 validation dataset and predicted properties from the VAE model.

Figure 2. Two-dimensional PCA analysis of latent space for VAE model. The

selected properties are shown in the color bar.

Figure 3. Random sampling in two-dimensional PCA analysis of latent space

with desired properties. The selected properties are shown in darker colors.

Figure 4. Interpolation between 2 molecules in two-dimensional PCA analysis

of latent space. The selected properties are shown in darker colors

Figure 5. Representation of the (a)

Histogram (b) Kernel Density Estimation

(KDE) of each latent dimension of VAE

(a) (b)

Table 1. Results of structure reconstruction

Figure 7. Relation of chemical properties for interpolation between 2 molecules.

Model Model 

1

Model 

2

Model 

3

Re-balancing 

VAE [4]

Validity 0.9063 0.9100 0.9129 0.9009

Accuracy 0.9912 0.9903 0.9841 0.9266

Table 2. Results of property prediction

Figure 8. Random sampling of

valid chemical structure with

desired properties.

Figure 9. Interpolation between 2 molecules of valid chemical structure with

desired properties. The numerical progress results are shown in figure 6.
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Electronegativity of different

atoms, ring structure, and

molecular geometry affect the

electric dipole. Besides, the

relation among different

properties discovered by the

model also matches the theory of

molecular geometry. The electric

dipole moment shows a negative

correlation with the bandgap of

the materials. That is, the deep

generative model learns more

physical significance on the

continuous representation.
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