Newton method for computing the nearest positive semidefinite matrices with the prescribed structure

Sheng－Yan Su（蘇聖晏），Department of Mathematics，National Cheng Kung University，Taiwan（bb1232174＠gmail．com）

 Advisor：Prof．Matthew M．Lin（林敏雄）
Abstract

Given a symmetric matrix，we in this work would like to approximate this symmetric matrix with two kinds of structure，i．e．，a positive semidefinite matrix with fixed diagonal entries selected from the original sym－ metric matrix and a correlation matrix with fixed el－ ements outside the diagonal entries．
Our approach is to transform the original approximate problem into an unconstrained continuously differen－ tiable convex optimization problem．Numerical ex－ periments seem to suggest the efficiency and effec－ tiveness of our method．

Discussion

Consider the unconstrained and differentiable convex optimization problem

$$
\min \varphi(\boldsymbol{x}):=\frac{1}{2}\left\|\left(A+\mathcal{P}^{*}(\boldsymbol{x})\right)_{+}\right\|_{F}^{2}-\boldsymbol{\ell}^{\top} \boldsymbol{x},
$$

and a best unique solution $x[1,2]$ ：

$$
F(\boldsymbol{x})=\mathcal{P}\left(A+\mathcal{P}^{*}(\boldsymbol{x})\right)_{+}=\boldsymbol{\ell}, \boldsymbol{x} \in R^{n+k} .
$$

Let $\Phi(\boldsymbol{x})=F(\boldsymbol{x})-\boldsymbol{\ell}$ and solve $\Phi(\boldsymbol{x})$ by the nons－ mooth Newton method（NNM）．
$\boldsymbol{x}^{[k+1]}=\boldsymbol{x}^{[k]}-V_{k}^{-1} \Phi\left(\boldsymbol{x}^{[k]}\right), V_{k} \in \partial F\left(\boldsymbol{x}^{[k]}\right), i=0,1, \ldots$
Next，we have to prove NNM is quadratic conver－ gence and Nonsingularity of $\partial F\left(\boldsymbol{x}^{*}\right)$ ．After we prov－ ing above notations，we have an Algorithm which is using inexact Newton direction．
We have to prove this Algorithm can be converge be－ cause it is not applied by the usual converge analysis ［3］．

Problem description

Consider the following convex optimization problem，

$$
\begin{array}{ll}
\min & \frac{1}{2}\|A-X\|_{F}^{2} \\
\text { s.t. } & \mathcal{P}(X)=\ell, \quad \ell \in R_{+}^{n+k} \\
& X \in \mathcal{S}^{n}
\end{array}
$$

where A is a symmetric matrix with its all entries are lie in $[0,1], X$ is a positive definite matrix，$\|\cdot\|_{F}$ is Frobenius norm， \mathcal{P} is a linear operator，k is the number we want to fix the off－diagonal entries at Problem 2， \mathcal{S}^{n} be a set of $n \times n$ symmetric matrices， \mathcal{S}_{+}^{n} be the collection of symmetric positive semidefinite matrices in \mathcal{S}^{n} ．

Results

Define dimension $n=10,50,100,200$ ，initial vector \boldsymbol{x}_{0} is a zero vector，$k=20$ and tolerance $=10^{-10}$ ．Let us see the experiment result for these two problems．

Problem 1：

n	Iterative number	Average time (s)	Residual
10	7.3012	2.0451×10^{-3}	7.4985×10^{-12}
50	10.025	3.6039×10^{-2}	1.1182×10^{-11}
100	10.85	1.6969×10^{-1}	5.8264×10^{-12}
200	11.441	1.6783×10^{0}	4.4239×10^{-12}

Problem 2：
n Iterative number Average time（s）Residual
$106.06 \quad 3.7715 \times 10^{-3} \quad 7.1486 \times 10^{-12}$

50	5.6	4.1669×10^{-2}
	8.6867×10^{-12}	

$100 \quad 5.94 \quad 1.9555 \times 10^{-1} \quad 9.9121 \times 10^{-1}$
$200 \quad 6.6 \quad 2.1696 \times 10^{0} \quad 9.3157 \times 10^{-1}$
There exist a problem we need to solve on next work that is our success rate at Problem 1 may not achieve 100% ．We find an interesting condition that the success rate is increasing obviously once we improve the range of diagonal entries of A ．But it still can not up to 100%

Conclusions

In this work，we apply NNM to solve our problem with two kinds of structure．In the process of analyz－ ing this method，we propose a convergence condition for NNM．In practice，the iterative matrix V_{k} in Algo－ rithm is nonsingular in the iterative process．There fore this method discussed in this paper is feasible． In the experimental result，we find that this method converges to the nearest solution quickly once it con verges

References

1］Charles K．Chui，Frank Deutsch，and Joseph D． Ward．＂Constrained bestapproximation in Hilbert space＂．In：Constr．Approx．6．1（1990），pp．35－64． ISSN：0176－4276．DOI：10．1007／BF01891408． URL：https：／／doi．org／10．1007／BF01891408．
2］Jrme Malick．＂A dual approach to semidefinite least－squares problems＂．In：SIAM J．Matrix Anal． Appl．26．1（2004），pp．272－284．ISSN：0895 4798．DOI： 10 ． $1137 /$ S0895479802413856．URL： https：／／doi．org／10．1137／S0895479802413856
［3］Houduo Qi and Defeng Sun．＂A quadratically con－ vergent Newton method forcomputing the near est correlation matrix＂．In：SIAM J．Matrix Anal Appl． 28.2 （2006），pp．360－385．ISSN：0895－4798 DOI：10．1137／050624509．URL：https：／／doi．org／ 10．1137／050624509．

